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INTRODUCllION INTRODUCllION 

Problem 

- 

The decomposition of the Laplacian operator, 

r' 

where the coefficient of the second term i s  proportional t o  the 

square of the angular momentum operator, i s  the basic  re la t ion  

between energy and angular momentum i n  the quantum mechanics of 

the one body problem (or  the relat ive motion of two par t ic les ) .  

When acting on a wave f'unction which i s  an eige-ction of t o t a l  

angular momentum 4, the Laplacian simplifies t o  

i n  which form it i s  clear tha t  the  e f fec t  of t h i s  decomposition is  

t o  rec?.uce the Schr8dinger equation from a three dimensional partial 

d i f f e ren t i a l  equation t o  a one dimensional (ordinazy) d i f f e ren t i a l  

equation. As such t h i s  re la t ion  is of fundamental mathematical 

importance and is  familiar t o  everyone who u t i l i ze s  quantum 

mechanics at  a l l .  

The analogous procedure when more than one par t ic le  i s  
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- 
involved, i n  par t icular  two identical  par t ic les  i n  an external 

force f ie ld ,  although known, i s  not as well known, nor i s  it as 

well  developed.’ When the external f i e l d  i s  tha t  of a fixed nucleus, 

the wave f’unction is  expanded i n  eigenfunctions of the t o t a l  angular 

- 

r_ 

momentum of the two par t ic les  multiplied by f’unctions of the three 

remining independent variables. “he t o t a l  angular momentum eigen- 

f’unctions are  functions of the three Euler angles only. These angles 

are  not unique, but in some way they mst describe the orientation 

of the instantaneous plane formedby the two par t ic les  and the center 

of coordinates (nucleus) i n  space. The remaining three coordinates 

then describe the positions of the par t ic les  i n  t h i s  plane, and the 

functions of these variables are the generalized radial f’unctions. 

Hylleraas’ or iginal  papers’ i n  effect  contained the reduced or  

radial equations f o r  t o t a l  S states i n  terms of the residual coor- 

dinates rl, r2,r12. I n  t h i s  case, the t o t a l  o rb i t a l  angular 

momentum i s  a constant function, and hence the reduction of a six- 

, -  / dinrensional t o  a three-dimensional p a r t i a l  d i f f e ren t i a l  equation is  

independent of how one defines the Euler angles. 

%3 The standard treatment of the general problem is  due t o  B r e i t ,  
~ 

I He used the N e r  angles that Hylleraas’ or iginal ly  introduced: 

namely the two spherical angles of one of the par t ic les  i n  the space 

fixed coordinate system and a second a z i m t h a l  angle between the 

rl - z plane and the r2-r1 plane. Bre i t ’ s  remaining coordinates 
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c 

b 

i 

rl and r2. If, however, one wants t o  describe two electron atoms or  

ions i n  the approximation tha t  the nuclei a r e  fixed, then one has 

* I.c 

an additional requirement of which there is no analogue i n  the one- 

body problem. And that i s  the Pauli principal: the requirement 

t h a t  the spa t i a l  function be e i ther  symmetric o r  antisymmetric under 

the exchange of the par t ic le  coordinates. It is clear  that the 

Hylleraas-Breit choice of Euler angles (which we hereinaf ter  r e fe r  

t o  as the Hylleraas-Breit angles), being quite unsynnnetrical with 

respect t o  the two part ic les ,  is  not optimum in  this respect . I n  4 

f a c t  the construction of linear combinations of angular momentum 

functions w i t h  the appro2riate exchange properties i s  a very difficult  

task which depends not only on the N e r  angles but on el2 as well. 

It is  not surprising, therefore, that Bre i t ' s  o r ig ina l  work was 2 

limited t o  P-states, and work thereafter has always been l imited to 

specif ic  angular momentum s t a t e s  . 3 

6 However, a treatment by Holmberg using a symmetrical choice 

of Euler angles (which we s h a l l  call Hdmberg's angles) has i n  the 

interim been carried out. With these angles the description of 

exchange as well  as par i ty  ( w h i c h  l a t t e r  property i s  also simply 

describably with the H-B angles) i s  simple (although these proper- 

t i es  a re  only alluded t o  i n  Holmberg's papeg 1. One 03 I the pix- 

poses of the present paper i s  t o  examine these properties and relate 

- 

t h e m  more clearly t o  the construction of the t o t a l  wave function 
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and further c l a r i fy  other aspects of Holmberg's important paper. 

Principally, however, we s h a l l  derive the general radial equations 

for  arbitrary angular momentum ( 4  ) for the case of two ident ica l  

- 

' par t ic les  i n  an external f ie ld .  Holmberg's treatment applies t o  

three par t ic les  of the same mass. 

It i s  clear  that i n  t reat ing three par t ic les  of equal mass 

Holmberg had i n  mind the three nucleon problem whereas we are 

interested in two-electron atoms, ions, and diatomic molecules. 

The application of t h i s  formalism t o  two electron atoms and ions 

i s  clear, and the decomposition amounts t o  a rigorous reduction.of 

. the Schrddinger equation. It should only be remarked here that the 

scat ter ing of electrons from one electron atoms and ions i s  a l so  a 

special  class of these problems. I We have therefore worked out the 

connection between the boundary conditions f o r  electron-atom 

scattering and Holmberg's angles (Section V I I I ) .  i 

c 

I 

1 

Inasmuch as Holmberg's paper refers t o  the three nucleon 

problem, reference should a l so  be made t o  the papers of Derrick and 

Blatt'. 

* I .  

These papers deal much more r e a l i s t i c s l l y  with the three 
' nucleon problem i n  that full account is  taken of an internucleon 

potent ia l  which is  considerably more complicated than a central  

potential .  A s  regards the actual  choice of coordimtes, k r r i c k  and 

B l a t t  define axes along the moments of i n e r t i a  of the three-body 

system. 

distances and therefore are quite different from Holmberg's angles 

(Section 11). 

As such they will depend on the lengths of the in te rpar t ic le  
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. 11. HOIMBERG'S ANGLES 

Figure 1 contains a perspective d r a w i n g  of Holmberg's angles 

which define the par t ic le  plane w i t h  respect t o  the space fixed x,  

y, and z axes. The rotated axes x', y', z '  are then defined by 

A A 

9' = 2 '  x x,' 
...I 

The Hohiberg Euler angles are then 

0 E angle between and $' 

9 = angle between 0' and 

W I angle between 2 and (~~-21) P A  

The ranges and planes of these angles are: 

(2 1 

(3 1 

0 6 0  s r  i n  2-2 '  plane 

0 d 5 2 7  i n  x-y plane 

0 s q ! s 2 X  i n  x'-y' plane 

As i s  usuala cap on a vector i s  used t o  represent a uni t  vector 

i n  the given direction. In particular A, - j, & a r e  the three 

unit vectors along the (space fixed) x, y, and z axes respectively, 

f i b b  
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. 

f i  f i  and thus are  synonymous with 2, y, and g. Similarly g', L', 
k_' and z', x', z' are identical. 

- 
A A A e 

It is  clear from the figure that g, being i n  the x-y plane 

has components % 

Since &' 
t o  every l ine  i n  tha t  plane going through the origin. 

cludes specifically the l i ne  of intersection of the z-z' plane with 

the x-y plane. 

. l ine is  the azimuth of &' 
h ~ s  azimuth 2 + 4 ( ~ f .  figure 1). 

clearly 8, 

i s  perpendicular t o  the z-z' plane, it is  perpendicular 

This in-  

However the azimuthal angle of t h a t  intersecting 

i t s e l f ,  and since has azimuth 9 , g' 
The polar angle of i s  

2 

therefore we have the important relation: 

The relat ions between Holmberg's angles and the spherical angles 

of the individual par t ic les  are obtained by substi tuting Eqs.  (7) 

and (8) into the Ihs of Eqs. (1) and (2) and using the ordinary 

decomposition of 9 and 2 i n  the rhs: 
? A -.. ?I = t S i - 1 1 P , 6 r q  + 15-19,  S & q  + ~ L s z ~ ,  

One obtains 
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The l a t t e r  re la t ion  i s , , o f  cowse, the w e l l  known expansion fo r  

the angle between two vectors. 

f It is also of in te res t  t o  give the vectors $1 and & in the - 
par t i c l e  Plane: (primed co-ordinate system) : 

h 
-/ $I S = L L  N - te,,] - k cor ( y -  e,z) - 
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"I n 

1 sue cos rp 

; ~ l  = 2 c,,$ - j ' ~  < e  5.. $ + S;~O s;. 9 

The following relations which are also very useful can now simply 

be derived by computing (fl z )  and (r2 g) in the primed system. 

2-c. Q, t 2 c - 0  6. + - ... 

A c f i#  

.. 

A A - Y 

Cor s, - s;e c 0 ~ ( y  - \blr) 

111. PROPERTIES UNDER PARITY AND EXCHANGE 

The operation of parity corresponds to  the simltaneous i n -  

version of both particles; coordinates: E ~ - P  -%I, 9 +-r2. It 

can be seen from figure 1 that this places r l  and r2 facing the 

opposite direction, but the cross product and hence i' w i l l  not 

c 

- Y 
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change as a r e su l t  of t h i s  operation. 

not change and i' w i l l  not change. 

goes in to  the negative of i t s e l f ,  so t h a t  y gets  increased by T . 
I n  other worde under parity 

Thus the z-z' plane will 

On the  other hand (&-El) 

e +  e 

Q-. 9 
y +  Y + =  

Exchange corresponds t o  the t ransformtion ~ ~ % j  B. horn the 

analyt ical  definit ions i' and it, 
w i l l  go in to  the negative of themselves. 

negative of i t s e l f .  

ponds t o  the transformation 8 + - 0. Noting tha t  9 is  the 

angle i n  the x-y plane and measured as posit ive with respect 

t o  the z axis, which is  fixed, we see t h a t  4 -v v + g  . The 

simultaneous inversion of z' and (r2-r1) means tha t  the modulus 

of the angle r emins  the same. However, since ly is  an angle 

Eqs. (1) and (2), the  new primed axe8 

Also (z2-gl) goes in to  

Clearly the inversion of the z '  axis corres- 

Z I -  

i n  the x'-y' plane, 

z' axis. Since the 

becomes clear t ha t  

it i s  measured as posit ive with respect t o  the 

l a t t e r  goes I n t o  the negat ive, i tself ,  it 

p + TLT - y Thus we have under exchange 

, (  

(23 

e 4  K -  e 
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. 

The significance of these transformations relates t o  t h e  

transformation properties Of the vector spherical  harmonics under 

the same operation. These functions, which a re  the eigenflmctlons 

of the angular momentum (next section), a re  the basic  functions i n  

terms of which the complete wave function is expanded. They can 

be writ ten 

where the normallzation has been so chosen tha t  the function i s  

ident ical  with what I s  given i n  section N and the die) agree with 

those given by Wlgner 

m,‘ 

0 
Only the dependence on 8 i s  non-trivial; 

. for m 7/ k I /  0 

F(a,b; c; z) I s  the hypergeometric function i n  the notation of 
f),  IL 

Magnus and Oberhettinger 9 . The important property of d f C e ) ,  proved 

8 i n  Wigner’e book , I s :  

-, It c -m m , - k  

L 
d ( ~ - 0 )  = (-11 .A, < e >  

Letting p and reprenent, parity and exchanges we hat.e 

(25 
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which using (27)  reduce t o  

The simplicity of Eg. (29)  is  the essent ia l  feature w h i c h  

recommends Holmberg's angles t o  the description of the two electron 

problem. 

Iv. ANGuIARl4cBmTW 

The componente of the t o t a l  angular momentum are  readily 

expressed In  term of the par t ic les '  sphericalangles.  Thus, fo r  

example 
-L M, = S b ?  3, +. cote, 6>P, h + su. cp, '3, 

aql 2 8% 
*I 

f i  

+ cot 29, C q ? ?  a a 
c?% 

The par t ic lee '  angles 191, q1, 4'2 via  (9) - (14) 
are implicit  functions of the four angles e, Q) , y , e12. 
m U s  the problem of finding Mx i n  these angles i s  a straightforward 

problem of partial differentiation. We can write 

where 

. 
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and F can be anyone of the angles 8, 4 , 'ly , or Q12. Using 

then Eq6. (9) - (14),  one find6 that the follaKing relations f B l l  

out quite easily: 

A, = - c o s *  

One c q o f  course,proceed i n  a completely analogaus way to 

get the remining components of the angulsr momentum, however, l e t  

u8 note from Eqs. (20 )  that 

and from (10) and (U) 



Since 

substi tution of (37) and (38) yields  

a ,  a - + B  * =Y ?% 

However, since 

we therefore have the z-component of M: 
m 

The remaining component of the angular momentum m y  be derived 

from the commutation relat ion 

Straightforward substi tution yields: 

These relat ions a re  independent of corresponding t o  the 

statement that the angular momentum only depends on the ( three)  

N e r  angles 8, 9 , '$ The forms of the three operators i s  the 

same at3 one gets with the Hylleraas-Breit angles 3 . The square of 

the angular momentum is likewlee the 8ame. One finde d i rec t ly  
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fr-m the Bum of the equares t h a t  

1 z[ ( I+ C n t k )  c + 2 + I, 
M = - $  
*ru a + =  ha= s&=a ' dyL  

I - 1. Cot! 2 + c o t Q  2 
s * e  a $ W  ae 

The vector spherical  harmonics, which have been given for 

the res t r ic ted  range m a k 7/ 0 in Eq. (251, are the similtaneous 

elgenfunctlons of s2 with eigenvalue % C ( e +I) and k 

They are given i n  a completely general, normalized form in Pauling 

where 

and the normlization constant is 
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I n  addition t o  the usual magnetic quantum number m, the 

vector spherical  harmonics depend on the  quantum number k, an in-  

teger whose range of values i s  the same as m: - [ f m, k S e . 
The physical significance of k derives from the f ac t  t ha t  the 2,"" 
are the eigenfunctions of the spherical top ( fo r  which (42) i s  the 

Schr8dinger equation), and k is  the angular momentum quantum number 

about the body-fixed axis of rotation. With regard t o  the 

applications t h a t  we contemplate here, k can be considered a degen- 

eracy label which must be adjusted such t h a t  other requirements are 

fulf i l led.  

V. CONSTRUCTION OF TIIE TOTAL WAVE FUNCTION 

We s h a l l  confine ourselves here s t r i c t l y  t o  the atomic problem Tqhi& 

Implies t h a t  the  potent ia l  energy as w e l l  as the kinet ic  energy 

commutes w i t h  the  t o t a l  angular momentum. I n  t h i s  case the total 

wave function fo r  a given 1 must be a l i nea r  superposition o f  t h e  

degenerate 2;'. I n  addition, m w i l l  be fixed fo r  a given mag- 

ne t i c  substate and the "radial" equations w i l l  be independent of m 

(c f .  Appendix 11). 

Considering, fo r  the moment, the residual  coordinates as rl, 

r2, e129 we - 
form: 

therefore expand the  total wave function in the 

(47) 



- 16 - 

The par i ty  operations, Eq. (231, only  e f fec ts  the Euler angles, 
k and from Eq. (28) it only multiplies the j T ' *  function by (-1) . 

Therefore by r e s t r i c t ing  the sum to  even and odd values of k, we 

guarantee tha t  the superpositions have even and odd par i ty  respec- 

t ively: 

where the double prime on the s u m t i o n  emphasizes tha t  the s u m  

goes over every other value of k. 

In  deriving the r ad ia l  equations (next section) we shall ex- 

p lo i t  the invariance of the radial  equations w i t h  respect t o  m, 

by choosing m = 0. When the Hadltonian i s  writ ten i n  terms of 

the N e r  angles and the remaining var iut iee ,  there w i l l  o c c x  term 

involving a and 2 . By vir tue of m = 0, the former terms 

vanish, but the lat ter terms would bring down the imaginary co- 
-33 bY 

e f f i c i en t  ik.  I n  order t o  avoid complex equations, it Ls therefore 

convenient t o  construct r e a l  angular momentum f'unctions. Let  
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and for  3( = 0 define 

This' then consti tutes a s e t  of real ,  orthonormal vector spherical 

= d e  ). These r e a l  vector spherical  har- harmonics (note dl 

monics are  s t i l l  eigenfunctions of par i ty  with eigenvalue (-1) . 
The property of exchange is  a mite more complicated than par i ty  

0, -k 0 ,k 

tc 

i n  the  sense tha t  it af fec ts  not only the E u l e r  angles, but the 

residual  coordinates as well. 

b e r ' s  angles, however, is t ha t  there i s  no mixing, and independent of 

whether we consider the residual variables rl, r2, Q12 or rl, r2, r12, 

the e f f ec t  of exchange on the residual coordinates is simply rl e r 2 .  

The beauty and importance of Holm- 

F i n a l l y  then, If we construct Y+ 

the operation of exchange on this Bum then gives, with the use of (29 ) ,  ; 
I 



. 

Thus if 

the function of Eq. (51) is a real, space symmetric (upper sign) 

or space antisymmetric (lower sign), eigenfunction of c M2 and MZ cor- 

responding to the quantum numbers J, and m with m = 0. The space 

symmetric and antisymmetric solutions correspond to singlet and trip- 

let spin states respectively. 

is sufficient for deriving the radial equations. 

10 

Furthermore the restriction to m = 0 

We have sham that the m = 0 function can be written in 

manifestly real form, Eq. (51). 

obvious what the generallzation is t o  arbitrary m states. 

generalization is nevertheless simply obtained. 

However in that form, it is not 

The 

Let , 

I 
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then the form (51) reduces t o  that of Eq. (47) f o r  rn = 0. For 

a rb i t ra ry  m one then need only replace the 

the appropriate 

functions by 

fhnctions, the radial 1; m c t i o n s  re- 

maining the same. 
Y ?  

2c , Alternatively one can define generalizations of the  

The complete function for arbi t rary rn can then be writ ten 

X *  
I n  t h i s  case the "radial" functions fA are the 6ame as i n  (5 l ) ,  

hence rea l ;  whereas the angular functions become altered. Note fo r  

.sd"'"' * m f 0, however, tha t  the modified spherical  harmonics, 

w e  no longer real. 

* * 

VI. THE KINETIC ENERGY 

J u s t  as i n  the case of the angular momentum, the k ine t ic  energy 

can be obtained by a straightforward process of p a r t i a l  different ia t ion.  
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I n  t h i s  case, however, since second partial derivatives are involved, 

the different ia t ion is  a much longer job, and, as we s h a l l  see, the 

partial derivatives involving Q12 no longer cancel out. 

We start then with the kinetic energy i n  spherical coordinates 

o;'+ VIZ = !- Xf, + - I p* + '  
1; 'b'c; 7, 

The first two terms are, of course, unaffected by the transformation. 

The angular differentiations then involve the transformation from the 

variables el, Ql, e2, q2 t o  e, + , y , and el,. 
Consider the coefficient of the r1-2 term. After some regrouping, 

we can write 

where f o r  a = 1, 2, 3, 4, 

problem thus reduce6 t o  finding each of the square brackets separately 

re fers  t o  8, + , y-' , el2. The 

# , '  ' 
' I  

i n  terms of the N e r  angles and elp. The results a re  given i n  Table I . :  
+ ' * '  

\ I' The kinet ic  energy thus becomes 
A 



- 21 - 

and 

(61) 

The expressions for  F2, A2 and B2 can be obtained by replacing el2 
by - 812 in  the above formulae (including the appropriate partial 

derivatives ) : 

It is clear, since a l l  t h e  coefficients are independent of 0 , 
that Mz conmutes With the kinetic energy. We have also explicitly 
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verif ied t h a t  = 0. 

Note t h a t  the p a r t i a l  derivative involving and no other 

angles has been placed i n  t h e  curly brackets w i t h  the radial derivatives. 
I 

This i s  because t h i s  term, as the radial derivatives themselves, do 

not affect  the o rb i t a l  angular momentum, and are the only terms which 

act on t o t a l  S s t a t e s  1,293 

I n  fact ,  i n  the action of the remaining terms on the angular  

momentum eigenfunction res t s  the bulk of the reduction of the 

SchrSdinger equation t o  i t s  3-dimensional "radial" form. 

reduction i n  mind (cf. next section), it i s  convenient t o  write F1 

i n  terms of operators whose effect  on the angular momentum eigen- 

f'unctions is  particularly simple. One can show 

With t h i s  

L 

+ s i n  e12 ( s in  29 r \ l  + cos 2y A 2 )  

+ 

where 

A, = 

A, = 
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and M2 i s  the t o t a l  angular momentum squared operator given i n  

Ea. (41). 

rc 

F2 is again derivable from F1 by replacing 812 by - 612. 

V 6 f .  TEE REDUCED OR RADIAL EQUATIONS, ATOMIC CASE 

The essent ia l  properties of the combinations of the operators 

appearing in F1 and FP, Eq. (62 ), a re  the following (cf Appendix I) : 
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where 

and 

Recall tha t  x i 6  the absolute value of k, Eq. (50). We have expl ic i t ly  

ver i f ied tha t  these relationships are not a l tered i f  one replaces the 

functions by the jim'x't functions of Eq. ( 54).(cf.Appendix 
I1 ) 

a:' 
This is, of course, necessary fo r  the r ad ia l  equations t o  be indepen- 

dent of m. With these relationships, it becomes quite simplc t o  de- 

rive the reduced equations from the original  Schrddinger equation 

where the  wave function yp, I s  expanded i n  Eq. (51). One obtains 



- 25 - 

i s  the S wave part of the kinetic energy, and only the term con- 

taining it survives in the description of S 
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Eq. (70) a re  the "radial" equations, which it has been our pur- 

pose t o  derive. They p e r t a i n  t o  both types of par i ty  and exchange 

states. Parity i s  determined by the eveness or  oddness of 8 . 
I f ,  for  example, .c i s  even, and we want t o  describe a s t a t e  of 

r-) even parity, Eqs. (70) couple the functions st and 4;- f o r  

)rr O I 2 , k  - - -  A , This involves 41% pairs  plus one M c t i o n  

( fo r  F = 0, 2;- i s  zero hence 5;- can be taken t o  be 

zero) or e + 1 functions. The odd par i ty  equations for  the same e 
correspond t o  the coupUng of the f'unction with )1 = 1, 3, ..., 

1 - 1. This relates l/2 pairs o r  1 functions t o  each 

other. 

functions corresponding the (2 ! + 1) degeneracy of the vector spherical  

harmonics for  a given m. For e odd, there are  I functions in -  

volved i n  the even par i ty  equations and 

Both even and odd par i ty  together therefore involve (2 4 + 1) 

1 + 1 functions i n  the 

odd par i ty  equations. 

For a given par i ty  and e , both s inglet  and t r i p l e t  (space 

symmetric and antisymmetric) s ta tes  are described by the same s e t  of 

equations. 

ferent  boundary conditions which must be applied, Eqs. (52). 

the key v i r tues  of the functions 

a re  e i ther  symnetric or antisymmetric; thus they may be confined 

t o  the region, say r1 2 r2. 
the exchange character of j 4  is  symmetric (which, according t o  

The differences i n  the solutions devolve from the dif- 

One of 
rk 

f (rl, r2, el2) i s  that they * 
1 

I f ,  f o r  example, e is  even so that 
x+ 
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1- 

(52), implies t h a t  j l  i s  antisymmetric), then these properties 

m y  be embodied i n  the boundary conditionsu: 

where 4. represents the normal derivative, and 
3 w  

and the solution from there on involves only the region rl r2 7,O. 

Such equations have d i s t inc t  advantages from the point of view of 

numerical solutions . I 2  

One can define, however, an asymmetric fhnction i n  terms of 

which the radial equations can be more simply written. Le t t ing  

and 

60 that, from Eq. (47), 
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These equations, depending as they do on Fr and r, are more ana- 

logous to  the form the P-wave equation of Brei t .2  The question may 

a r i se  i n  connection with these as  we l l  as Bre i t ' s  equations, of whether 

they a re  well-defined, since they involve two functions Ft and gF 
and ye t  there is  only one equation (for a given 7 ). This question, 

z 

i n  f a c t  would appear t o  be particularly relevant as the previous form 

of our equations,(m) do consti tute a coupled s e t  for  a given 

To see tha t  both si tuat ions are  meaningful and i n  par t icular  t ha t  (77) 
is well-defined, consider a numerical solution of (77). 

# . 
; 

In tha t  case ' 

the space of the independent variables is divided in to  a gr id  of 

points, and Fa 
z 

i6 the collection of numbers associated with these 



- 29 - 

grid points. FZ 

many components as  there are grid points. The d i f f e r e n t i a l  equation 

i s  replaced by a matrix which operates on the vector FI 

everytime an Ft 

what has t o  be done: namely one mst l e t  the matrix counterpart of i t s  

can therefore be considered a vector w i t h  as 

II . Now 
- H  

occurs i n  the equation, it is completely clear  

coefficient in the d i f fe ren t ia l  equation operate on tha t  component of 

F' l 
pletely unambiguous prescription which is tantamount t o  saying tha t  

the set (77) is w e l l  defined by i t s e l f .  

which is  i ts  ref lect ion point defined by (76). This i s  a com- 

The reason tha t  (70) i s  

composed of two equations fo r  each y whereas (77) is not i s  due t o  

the f a c t  tha t  the f b c t i o n s  F1 are  asymmetric and therefore must 

be solved fo r  i n  the whole TI, r2, Q12 space. On the other hand 

r 

' t h e  f:' functions are ei ther  symet r i c  or anitsynnnetric, and there- 

fore they are  r e s t r i c t ed  t o  the r l  3 r2, Q12 (or  equivalently t o  the 

rl 

variable space, it is necessary tha t  there be double the number of 

r2, el2) space. Since this  i s  only half  the independent 

functions t o  recover the same information. This i s  again t o  say 

tha t  (70) and (77) are completely equivalent. 

dan t  equation with FI )r 

(Nevertheless a redun- 
.vfl 

and F, interchanged may readily be d e r i v e d  
* 

We have s ta ted  tha t  (70) has  cer ta in  advantages from the point 

of view of numerical integration. However, it should a l so  be stated 

tha t  the form (n) will probably be more advantageous f o r  ordinary 

var ia t ional  calculations. This is because i f  me adopts a specif ic  
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x 

analytic form of Fl 

the expression t o  obtain &x 

, one need only interchange rl and r2 i n  

F 
The differences i n  the f i *  description from tha t  of F,( 

gives r i s e  t o  character is t ic  differences in the formulation of 

boundary conditions for scattering problems (c f .  the next sec t ion) .  

The r e s t r i c t ion  of these equations t o  the atomic case (two 

ident ical  par t ic les  i n  a fixed cent ra l  f i e l d )  has implicit ly been made 

by assuming tha t  the potential  is  a function of the residual coordinates, 

so t ha t  V commutes with the angular momentum and therefore appears 

as an additional diagonal term i n  the radial equations. 

The in te r -par t ic le  distance r12 i s  re la ted  t o  the independent 

radial coordinates tha t  we have thus far considered, rl, r2, Q12 v i a  

the l a w  of cosines: 

112 = r12 + rZ2 - 2r1r2 cos e12. 

Alternatively, however, one can consider rl, r2, and r12 as the 

independent coordinates and derive radial equations involving them. 

Those coordinates, in fact ,  have certain advantages since the three 

s ingular i t ies  i n  the potential occur a t  t h e i r  null point. 

such they can describe the wave function i n  the region of close 

interaction very w e l l .  !Chese variables, therefore, are  par t icular ly  

As 

. 
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suited t o  calculation of low-lying bound states of two-electron 

atoms(where on t h e  whole the electrons are  qui te  Close t o  each other 

and t o  the nucleus) and such successful calculations have been done 

ever since the ear ly  work of Hylleraas. 
1 

When one considers the equation i n  the form we have previously 

given them, involving Qp, one i s  natural ly  led t o  expand the "radial" 

wave function i n  terms of Legendre polynomials of cos Q12 The 

expansion i s  then truncated a f t e r  some P (cos el2) and convergence i s  

sought as a f'unction of n. 
n 

In these classes of two electron problems, 

t h i s  consti tutes the idea of configuration interact ion i n  i t s  most 

general form. Recently th i s  idea has come under some cr i t ic ism 13,14,15 

principally because such a relat ive partial wave expansion necessarily 

converges slowly where the electron-electron interaction i s  large 

(r12 small). The argument is  doubtless j u s t i f i ed  for  the above- 

mentioned low-lying bound states. However the argument can easi ly  

get  dis tor ted and exaggerated, for  instance when applied t o  the 

low-energy scattering of electrons from hydrogen. The point there  

i s  tha t  the long-range correlation coming from the induced potent ia l  

i n  the atom i s  at  l ea s t  as important as the short  range correlations 

and yet  i s  only poorly approximted by the conventional Hylleraas 

12 type of expansion. This si tuation has been discussed elsehwere . 

16 

* 

These reservations notwithstanding, however, it is  nevertheless 

t rue tha t  the most accurate three body calculation6 have been made 

using the rl, r2, r12 coordinates, o r  l inear  combinations of them 17 , 



18 17 on.the low-lying states of helium and i t s  isoelectronic ions . 
We therefore give below the r ad ia l  equations i n  terms of rl, r2, r12. 

The equations are i n  t he i r  asymmetric form corresponding t o  Eq. (77), 

since it i s  assumed t ha t  they w i l l  be u t i l i zed  i n  connection with 

var ia t ional  calculations with analytic expansions of the radial wave 

functions 
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' Here 

The quantity whose square root f i s  can easily be shown t o  be 

positive def ini te .  I n  the equation (68) the F i s  understood 

t o  be a function of r1, r2, r12: 
4 

In addition L is  the kinetic energy counterpart of the 

S-wave L i n  terms of rl, r2, ~ 1 2 :  

TI 

682 

The equations (79) can readily be put i n  the form of couplet$ 

equations f o r  a given % . I n  that form they would be elosest  t o  

the form original ly  given by Holmberg , (although as we have s ta ted  

h is  equations apply t o  three equal mass par t ic les ) .  

ference between the two se t s  of equations, however, is tha t  the 

present ones a re  mni fe s t ly  real, whereas one term i n  Holniberg's 

equations is  imaginary . It is clear that the eqyations as w e l l  

as the solutions must be reducible t o  completely real form fo r  any 

given angular momentum state. 

6 

One sa l ien t  dif- 

6 

* 

The accompllshment of t h i s  i n  the 
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1. 

present case comes from the expl ic i t  construction of r e a l  vector 

spherical harmonics, Eq. (49). 

VI11 BOUNDARY CONDITIONS FOR S C A T " G  

I n  th i s  section we c?erive the asymptotic forms of the 

radial functions corresponding t o  the scat ter ing of an electron 

from a one electron atom i n  i t s  ground s ta te .  

t ions when the target  system i s  an ion instead of an atom can 

readi ly  be made and w i l l  have no effect  on the angular integrations 

wi th  which we are here concerned. 

The Coulomb modifica- 

As we have seen i n  the foregoing sections culminating i n  the 

last section, the selection of a symmetric choice of Euler angles 

(Hdnberg ' 6  angles) has allowed for  a completely general derivation 

of the radial equations. 

problem, huwever, a symmetric choice of angles i s  not the m o s k  ad- 

vantageous since here we are  concerned with an in t r in s i ca l ly  asym- 

metric s i tuat ion.  Thus i f  we consider t h a t  region of configuration 

space where rl i s  large and r2 small, corresponding t o  electron 1 

being scattered from the atom to which electron 2 i s  bound, the 

wave function i n  th i s  region alone w i l l  not be symmetric. 

i n  terms of the Hylleraas-Breit angles, the spherical  angles of one 

of the par t ic les  being defined as two of the Euler angles, the wave 

function i n  th i s  asymmetric region i s  easier t o  describe. Neverthe- 

less t h i s  is a complication of de ta i l  only,since a l l  the angular 

integrations m y  readily be performed as we s h a l l  now show. 

From the point of view of a scattering 

However 
e 
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We start with the statement tha t  the complete wave function 

mst have the asymptotic form: 

where ( R l s ( r 2 ) / r 2 )  x,(flz) i s  the ground state of the one-electron 

atom (hydrogen). On the other hand, from Eq. (5l), 

where 

t It should be noted t h a t  (82) re fers  t o  the s t a t e  of par i ty  (-1) 

as long as we are considering e l a s t i c  scattering f r o m  the ground (1s) 

s t a t e .  This then defines the evenness or  oddness of the values over 

which K goes i n  the s u m t i o n  i n  Eq. (83). 

The quadrature i n  (84) can readily be performed by recalling 

from Section I1 t ha t  f l  i s  the angle between and El 
whose spherical angles i n  the primed coordinate systems are given 

i n  Ep. (20). 

* * 

h e  can then use these spherical  angles t o  expmd 

P (cos &) via  the addition theorems f o r  spherical harmonics. e 
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In i t s  r e a l  f o r 2  t h i s  gives i n  the present case 

In  (83) we have written both the Legendre and associated 

Legendre polynomials as functions of the angle but what we mean i n  

a l l  cases is t h a t  the angle is t o  be subst i tuted in to  the trans- 

cendental form of the function. 

not P1 ( p ) = p 
Oberhettinger 

Feshbach ). 

For example P1 ( p ) = cosp and 
rn . The sign of the Pc is that of Magnus and 

9 (which differs by (-l)m from tha t  of Morse and 

3 To complete the quadrature i n  (84)  we note tha t  

Sub 6 ti t u t  ion in to  (84 )  now yields the desired resu l t :  

' .  

The radial function themselves thus approach 
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i n  which form we see tha t  rl, r2 dependence of a l l  the 

functions is  independent of I , so t h a t  none of them vanishes i n  

&’* 

the asymptotic region. 

t r i v i a l ,  it may be worthwhile t o  define new f’mctions whose asymptotic 

behaviour i s  s t r i c t l y  the rl, r2 dependence i n  (88). 

Since i n  a l l  cases the Qu dependence is  

For bound state problems, it i s  clear  t h a t  a l l  the radial fhc- 

t ions must vanish i n  a l l  asymptotic regions. 

IX OTBERAPPLICATIONS 

I n  addition t o  two electron atomic or ionic  systems the present 

equations apply t o  double mu or pi  mesic atoms, although as the mss 

of the ident ica l  par t ic les  gets heavier, the correction for the center 

of mas6 becomes more important. Also for the  spinless bosons (p i  

mesons) only the space symet r i c  solutions w i l l  presumably be relevant. 

The equations can also be applied t o  two different  par t ic les  

In of the same mass (positron-hydrogen scattering, fo r  example). 

t h i s  case, the potential, V, w i l l  no longer be symnetric hence the 

solutions will not be syllnnetric which implies t ha t  boundary condi- 

t ions  l i k e  (72) must be changed t o  matching conditions of the asym- 

metric solutions along the l i n e  rl = r2 

giving one solution where formerly there were two, i n  accord w i t h  the  

19 . This has the e f f ec t  of 

dis t inguishabi l i ty  of the particles.  

The mJor extension of th ie  approach ie t o  two-electron diatomic 

8 

. . .. . . ,. . - . . .. . . 
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20 molecules. In thin case, the extension from one to two elec- 

trons is non-trivial. 

and will be published elsewhere. 

However, the analysis has been completed 

2L 
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Appendix I 

and 

In this appendix, we prove the Eqs. (63 )  and (66). For m = 0, 

& terms give zero. Therefore, we can write 
MJ 

A, 2' - cot e -& - co; 2 
38' ab 3'v' 

where 

and 
b 

. 
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where we have used the well known relations for the derivatives of 

hypergeometric functions: 

A relation between Fr , FXtl F x + 2  can be obtained from 

the differential equation satisfied by the hypergeometric function 

8 
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Multiply (112) by S k 2 V  and (Ill) by cos 2+ and subtract to get 

where 

f + X  



4 
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kt % * f +  I i n  (IlO), then 

Substituting 

we get after 

w. 

in  t h e  above fo r  Fa+,  and Fx+3 by using (110) 

some .rearrangement 

Letting 3c -+ % -2 multiplying by 2( Y - I )2 sin28 and rear rq ing  we 

have fo r  r7,2 

G =  L si,. e P ,  ' A ,  I F ,  
L x =  0 

F i n a l l y  then With. the substitution of the above in (113) we.obtain 

* 
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%there Biz, has already been defined i n  Eq. (68). 

The special  cases X - 0 J I can be determined from (I13), 

(II.~), (117). W i t h  proper normalization 

and 

8 

We can combine (118,119,110) t o  get  Eq. (65a). 

. 
a 
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Appendix If 

, 
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For illustration purposes, let  K - 1 7 m  Multiply (II2) by 

sin 2$ and (IIl) by cos 2+ and subtract to get 

where we have used the relation 
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Using &isresult, (which reduces to (115) f o r  m = 0) in (ID), we 

obtain for k # 0,l 

BO that 

where 
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. 

It is easily verified tha t  

Using (1110) and (IIll) i n  (118) ,~e  find 

Adding (I-) and (IIl3) and using the definition (5k) we derive 

fins- for F + 0, 1 
\ 

. * 
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which i s  identicalinform bo (118) for m = 0. 

be proved in the same way, thus the radial equations are in fact 

independent of m. 

Other relations can 
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Table 1 : Coefficients of the Angular Derivatives in the Kinetic c 

Energya Cf. Eq. (49) 

Coe f f i cien t 

sin2(y + -1 e12 

cos2(y + Y) 
2 

sin2 e12 

sin2 e12 sin 28 

Derivative 

a2 
5 9  

a" 1 
bel2 

cot e :cos2(y+hj h ae . 2 
sin e12 

cos e sin (2V+ea) 
sin2 e sin 

B1 

h 
ac) 

h 
dY 

Coefficient 

cot ei2 

Derivative 

a 
ae12 

a2 
aew 

-~i;(2~ + el=) 
sin e12 sin e 

- a2 cot e sin (2y+e,L 
sinz e12 aeay 

0 d' 
aeae12 

-2 cos e COS2(*+%) a2 
2 

einZel2 sin ze stay 

-1 

8 A 1  and Bl are given EqB. (60) and (61). 
t 

a" 
a'yae, 



P 

Figure Caption 

Figure 1. Perepective drawing of (Holmberg's) Euler angles 

end the unit vectors of the problem. 




